Infinity-Norm Permutation Covering Codes from Cyclic Groups
نویسندگان
چکیده
We study covering codes of permutations with the l∞-metric. We provide a general code construction, which uses smaller building-block codes. We study cyclic transitive groups as building blocks, determining their exact covering radius, and showing linear-time algorithms for finding a covering codeword. We also bound the covering radius of relabeled cyclic transitive groups under conjugation. Index Terms covering codes, l∞-metric, relabeling, cyclic group
منابع مشابه
The remoteness of the permutation code of the group $U_{6n}$
Recently, a new parameter of a code, referred to as the remoteness, has been introduced.This parameter can be viewed as a dual to the covering radius. It is exactly determined for the cyclic and dihedral groups. In this paper, we consider the group $U_{6n}$ as a subgroup of $S_{2n+3}$ and obtain its remoteness. We show that the remoteness of the permutation code $U_{6n}$ is $2n+2$. Moreover, ...
متن کاملOn the permutation groups of cyclic codes
We classify the permutation groups of cyclic codes over a finite field. As a special case, we find the permutation groups of non-primitive BCH codes of prime length. In addition, the Sylow p-subgroup of the permutation group is given for many cyclic codes of length p. Several examples are given to illustrate the results.
متن کاملThe Permutation Groups and the Equivalence of Cyclic and Quasi-Cyclic Codes
We give the class of finite groups which arise as the permutation groups of cyclic codes over finite fields. Furthermore, we extend the results of Brand and Huffman et al. and we find the properties of the set of permutations by which two cyclic codes of length p can be equivalent. We also find the set of permutations by which two quasi-cyclic codes can be equivalent.
متن کاملThe q-ary image of some qm-ary cyclic codes: Permutation group and soft-decision decoding
Using a particular construction of generator matrices of the -ary image of -ary cyclic codes, it is proved that some of these codes are invariant under the action of particular permutation groups. The equivalence of such codes with some two-dimensional (2-D) Abelian codes and cyclic codes is deduced from this property. These permutations are also used in the area of the soft-decision decoding o...
متن کاملSome Constant Weight Codes from Primitive Permutation Groups
In recent years the detailed study of the construction of constant weight codes has been extended from length at most 28 to lengths less than 64. Andries Brouwer maintains web pages with tables of the best known constant weight codes of these lengths. In many cases the codes have more codewords than the best code in the literature, and are not particularly easy to improve. Many of the codes are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1703.00500 شماره
صفحات -
تاریخ انتشار 2017